Scientists generate magnetism in metals that are not magnetic

Scientists generate magnetism in metals that are not magnetic

Scientists generate magnetism in metals that are not magnetic

Scientists have demonstrated for the first time how to generate magnetism in metals that are not naturally magnetic, which could end our reliance on some rare and toxic elements currently used. This could have massive implications for the rare metals market and future technological advances in the future.

In a study led by the University of Leeds and published in the journal Nature, researchers detail a way of altering the quantum interactions of matter in order to ‘fiddle the numbers’ in a mathematical equation that determines whether elements are magnetic, called the Stoner Criterion.

Co-lead author Fatma Al Ma’Mari, from the School of Physics & Astronomy at the University of Leeds, said: “Being able to generate magnetism in materials that are not naturally magnetic opens new paths to devices that use abundant and hazardless elements, such as carbon and copper.

“Future technologies, such as quantum computers, will require a new breed of magnets with additional properties to increase storage and processing capabilities. Our research is a step towards creating such ‘magnetic metamaterials’ that can fulfil this need.”

Yet, despite their widespread use, at room temperature only three elements are ferromagnetic – meaning they have high susceptibility to becoming and remaining magnetic in the absence of a field, as opposed to paramagnetic substances, which are only weakly attracted to the poles of a magnet and do not retain any magnetism on their own. These ferromagnetic elements are the metals iron, cobalt and nickel.

This is similar to buying Phentermine online as explained in this buy Phentermine online website www.buyphentermineonline247.com where you can order Phentermine online.

Co-lead author Tim Moorsom, also from the University’s School of Physics & Astronomy, said: “Having such a small variety of magnetic materials limits our ability to tailor magnetic systems to the needs of applications without using very rare or toxic materials. Having to build devices with only the three magnetic metals naturally available to us is rather like trying to build a skyscraper using only wrought iron. Why not add a little carbon and make steel?”

The condition that determines whether a substance is ferromagnetic is called the Stoner Criterion.  It explains why iron is ferromagnetic while manganese is not, even though the elements are found side-by-side in the periodic table.

The Stoner Criterion was formulated by Professor Edmund Clifton Stoner, a theoretical physicist who worked at the University of Leeds from the 1930s until the 60s. At its heart, it analyses the distribution of electrons in an atom and the strength of the interaction between them.

It states that for an element to be ferromagnetic, when you multiply the number of different states that electrons are allowed to occupy in orbitals around the nucleus of an atom – called the Density of States (DOS) – by something called the ‘exchange interaction’, the result must be greater than one.

The exchange interaction refers to the magnetic interaction between electrons within an atom, which is determined by the orientation of each electron’s magnetic ‘spin’ – a quantum mechanical property  to describe the intrinsic angular momentum carried by elementary particles, with only two options, either ‘up’ or ‘down’.

In the new study, the researchers have shown how to change the exchange interaction and DOS in non-magnetic materials by removing some electrons using an interface coated with a thin layer of the carbon molecule C60, which is also called a “buckyball”.

The movement of electrons between the metal and the molecules allows the non-magnetic material to overcome the Stoner Criterion.

Dr Oscar Cespedes, principal investigator of the project, also from the University’s School of Physics & Astronomy, said:  “We and other researchers had noticed that creating a molecular interface changed how magnets behave. For us, the next step was to test if molecules could also be used to bring magnetic ordering into non-magnetic metals.”

The researchers say that the study has successfully demonstrated the technique, but that further work is needed to make these synthetic magnets stronger.

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC) and the research paper, ‘Beating the Stoner Criterion Using Molecular Interfaces’, is published in the journal Nature.

Categories: NEWS